Постоянный электрический ток Действующее значение переменного тока и напряжения Однофазные выпрямители и сглаживающие фильтры Переходные процессы в линейных электрических цепях

Лекции, лабораторные и примеры расчета из курсовой. Электротехника и электроника

Переходные процессы в линейных электрических цепях

1. Возникновение и общая характеристика переходных процессов.

2. Законы коммутации.

3. Классический метод расчета переходных процессов. Независимые и зависимые начальные условия.

4. Переходные процессы в RL и RC цепях.

1. Общая характеристика переходных процессов

       В электрических цепях возможны включения и отключения отдельных ветвей, короткие замыкания участков цепи, различного рода переключения. Любые изменения в электрических цепях можно представить в виде переключений или коммутаций. Характер коммутации указывается в схеме с помощью рубильника со стрелкой. По направлению стрелки можно судить, замыкается или размыкается рубильник.

      При коммутации в цепи возникают переходные процессы, т.е. процессы перехода токов и напряжений от одного установившегося значения к другому.

    Изменения  токов  и напряжений  вызывают    одновременное  изменение  энергии электрического и магнитного полей, связанных с элементами цепи - емкостями и индуктивностями. Однако энергия электрического поля и энергия магнитного поля могут изменяться только непрерывно, так как скачкообразное изменение потребовало бы от источника бесконечно большой мощности. На этом рассуждении основаны законы коммутации.

2. Законы коммутации

      Первый закон. В любой ветви с индуктивностью ток не может изменяться скачком и в момент коммутации сохраняет то значение, которое он имел непосредственно перед моментом коммутации

iL (0+) = iL (0-),

      где  iL (0+) - ток в ветви с индуктивностью в момент коммутации, сразу после коммутации. Знак "+" в формуле обычно не записывается. Время переходного процесса отсчитывается от момента коммутации;

             iL (0-) - ток в индуктивности непосредственно перед коммутацией.

      Второй закон. Напряжение на емкости сразу после коммутации сохраняет то значение, которое оно имело непосредственно перед моментом коммутации.

uC (0+) = uC (0-),

      где  uC (0+) - напряжение на емкости в момент коммутации;

             uC (0-) - напряжение на емкости непосредственно перед моментом коммутации.

3. Классический метод расчета переходных процессов

      Допущения, применяемые при анализе переходных процессов.

Полагают, что переходный процесс длится бесконечно большое время.

Считают, что замыкание и размыкание рубильника происходит мгновенно, без образования электрической дуги.

Принимают, что к моменту коммутации предыдущие переходные процессы в цепи закончились.

    В соответствии с классическим методом расчета, переходный ток в ветви схемы представляют в виде суммы принужденного и свободного токов.

ris_370.gif.

      где  iпр(t) - принужденный ток, определяется в установившемся режиме после коммутации. Этот ток создается внешним источником питания. Если в цепь включен источник постоянной ЭДС, принужденный ток будет постоянным, если в цепи действует источник синусоидальной ЭДС, принужденный ток изменяется по периодическому, синусоидальному закону;

             iсв(t) - свободный ток, определяется в схеме после коммутации, из которой исключен внешний источник питания. Свободный ток создается внутренними источниками питания: ЭДС самоиндукции индуктивности или напряжением заряженной емкости.

      Свободный ток определяют по формуле:

ris_371.gif.

      Количество слагаемых в формуле равно числу реактивных элементов (индуктивностей и емкостей) в схеме.

      P1, P2 - корни характеристического уравнения.

      А1, А2 - постоянные интегрирования, определяются с помощью начальных условий.

      Начальные условия - это переходные токи и напряжения в момент коммутации, в момент времени t, равный нулю.

      Начальные условия могут быть независимыми или зависимыми.

      Независимыми называют начальные условия, подчиняющиеся законам коммутации, законам постепенного, непрерывного изменения. Это напряжение на емкости uc(0) и ток в ветви с индуктивностью iL(0) в момент коммутации.

      Остальные начальные условия: напряжение и ток в ветви с сопротивлением uR(0)   и    iR(0), напряжение на индуктивности uL(0) , ток в ветви с емкостью iC(0) - это зависимые начальные условия. Они не подчиняются законам коммутации и могут изменяться скачком.

Транзисторы – это приборы, выполняющие роль управляемых резисторов. Включая резистор в цепь большой мощности получают эффект усиления мощности управляющего сигнала, мощность которого невелика.

Переходные процессы в цепях с одним реактивным элементом

Короткое замыкание в R-L цепи

Переходные процессы в цепях с двумя реактивными элементами При последовательном соединении сопротивления R, катушки индуктивности L и конденсатора С образуется электрический R-L-C контур

Преобразование энергии в электрической цепи. Мгновенная, активная, реактивная и полная мощности синусоидального тока Передача энергии w по электрической цепи (например, по линии электропередачи), рассеяние энергии, то есть переход электромагнитной энергии в тепловую, а также и другие виды преобразования энергии характеризуются интенсивностью, с которой протекает процесс, то есть тем, сколько энергии передается по линии в единицу времени, сколько энергии рассеивается в единицу времени.

Помимо понятий активной и реактивной мощностей в электротехнике широко используется понятие полной мощности

Линейные электрические цепи при несинусоидальных периодических токах Предыдущие лекции были посвящены анализу электрических цепей при синусоидальных токах и напряжениях. На практике ЭДС и токи в большей или меньшей степени являются несинусоидальными. Это связано с тем, что реальные генераторы не обеспечивают, строго говоря, синусоидальной формы кривых напряжения, а с другой стороны, наличие нелинейных элементов в цепи обусловливает искажение формы токов даже при синусоидальных ЭДС источников.


Преобразование электрической энергии в тепловую