Преобразование электрической энергии в тепловую Расчет смешанной цепи с одной э.д.с. Трехфазной системы Полупроводниковые диоды и стабилитроны Компьютерное моделирование Источники электромагнитного поля

Лекции, лабораторные и примеры расчета из курсовой. Электротехника и электроника

Постоянный электрический ток

1. Характеристики тока. Сила и плотность тока. Падение потенциала вдоль проводника с током.

Всякое упорядоченное движение зарядов называется электрическим током. Носителями заряда в проводящих средах могут быть электроны, ионы, «дырки» и даже макроскопические заряженные частицы.

  За положительное направление тока принято считать направление движения положительных зарядов. Электрический ток характеризуется силой тока – величиной, определяемой количеством заряда, переносимого через воображаемую площадку, за единицу времени:

Для постоянного тока силу тока можно определить как:

Размерность силы тока в СИ: (ампер).

Кроме этого, для характеристики тока в проводнике применяют понятие плотности тока – векторной величины, определяемой количеством заряда, переносимого за единицу времени через единичную площадку, перпендикулярную линиям тока (рис.5.1):

 Рис.5.1. К определению вектора плотности тока

Размерность плотности тока в СИ: .

Покажем, что плотность тока  пропорциональна скорости упорядоченного движения зарядов в проводнике . Действительно, количество заряда, протекающее через поперечное сечение проводника за единицу времени есть (рис.5.2):

, где  - концентрация зарядов

 .

Рис.5.2. К выводу формулы для плотности тока.

Или в векторном виде:

Как мы знаем, при равновесии зарядов, то есть при отсутствии тока, потенциал всех точек проводника имеет одно и то же значение, а напряженность электрического поля внутри него равна нулю (рис.5.3а). При наличии тока электрическое поле внутри проводника отлично от нуля, и вдоль проводника с током имеет место падение потенциала (рис.5.3б).

Тока нет: 

Рис.5.3а. Электрическое поле проводника при отсутствии тока.

Ток есть: 

Рис.5.3б. Электрическое поле проводника при наличии тока.

Таким образом, для существования тока в проводнике необходимо выполнение двух условий: 1) наличие носителей заряда и 2) наличие электрического поля в проводнике.

2.  Закон Ома для однородного участка цепи. Сопротивление проводников. 

Между падением потенциала - напряжением U и силой тока в проводнике I существует функциональная зависимость , называемая вольтамперной характеристикой данного проводника (ВАХ). Вид этой зависимости для разных проводников и устройств может быть самым разнообразным.

Как показывает опыт, для многих проводящих материалов выполняется зависимость:  ,

получившая название закона Ома (Ohm G., 1787-1854) для однородного участка  цепи. (ВАХ приведена на рис.5.4).


Рис.5.4. ВАХ проводника, подчиняющегося закону Ома.

Коэффициент пропорциональности R называется сопротивлением проводника. Сопротивление однородного проводника (рис.5.5) зависит от материала, из которого он изготовлен, его формы, размеров, а также от температуры.

Рис.5.5. Однородный проводник.

Размерность сопротивления: [R] = . Кратные единицы измерения: 1кОм = 103Ом ; 1Мом = 106Ом.

ρ – удельное сопротивление. Размерность ρ в СИ: [ρ] = Ом∙м.

Для многих веществ зависимость сопротивления от температуры в широком интервале температур вблизи Т≈300К определяется эмпирической зависимостью от температуры их удельного сопротивления:

,

где α – температурный коэффициент сопротивления;  - значение  при .

Для металлов , поэтому сопротивление металлов в указанной области температур пропорционально температуре (рис.5.6).

Рис.5.6. Зависимость сопротивления металлов от температуры.

Для электролитов α<0, зависимость их сопротивления от температуры имеет вид, изображенный на рис.5.7. Для разных электролитов α различно.

Рис.5.7. Зависимость сопротивления электролитов от температуры.

Дифференциальная форма закона Ома. Если проводник неоднороден по своему составу и/или имеет неодинаковое сечение, то для характеристики тока в различных частях проводника используют закон Ома в дифференциальной форме.

Соединение сопротивлений бывает последовательным, параллельным и смешанным.

Переменный ток Установившиеся вынужденные электромагнитные колебания можно рассматривать как протекание в цепи, содержащей резистор, катушку индуктивности и конденсатор, переменного тока. Переменный ток можно считать квазистационарным, т. е. для него мгновенные значения силы тока во всех сечениях цепи практически одинаковы, так как их изменения происходят достаточно медленно, а электромагнит­ные возмущения распространяются по цепи со скоростью, равной скорости света. Для мгновенных значений квазистационарных токов выполняются закон Ома и вытека­ющие из него правила Кирхгофа, которые будут использованы применительно к пере­менным токам (эти законы уже использовались при рассмотрении электромагнитных колебаний).

Резонанс напряжений

Мощность, выделяемая в цепи переменного тока Мгновенное значение мощности переменного тока равно произведению мгновенных значений напряжения и силы тока


Однофазные выпрямители и сглаживающие фильтры