Преобразование электрической энергии в тепловую Расчет смешанной цепи с одной э.д.с. Трехфазной системы Полупроводниковые диоды и стабилитроны Компьютерное моделирование Источники электромагнитного поля

Лекции, лабораторные и примеры расчета из курсовой. Электротехника и электроника

Компьютерный эксперимент.

Компьютерное моделирование — основа представления знаний в ЭВМ. Компьютерное моделирование для рождения новой информации использует любую информацию, которую можно актуализировать с помощью ЭВМ. Прогресс моделирования связан с разработкой систем компьютерного моделирования, а прогресс в информационной технологии — с актуализацией опыта моделирования на компьютере, с созданием банков моделей, методов и программных систем, позволяющих собирать новые модели из моделей банка.

Разновидность компьютерного моделирования — вычислительный эксперимент, т. е. эксперимент, осуществляемый экспериментатором над исследуемой системой или процессом с помощью орудия эксперимента — компьютера, компьютерной среды, технологии.

Вычислительный эксперимент становится новым инструментом, методом научного познания, новой технологией также из-за возрастающей необходимости перехода от исследования линейных математических моделей систем (для которых достаточно хорошо известны или разработаны методы исследования, теория) к исследованию сложных и нелинейных математических моделей систем (анализ которых гораздо сложнее). Грубо говоря, наши знания об окружающем мире линейны, а процессы в окружающем мире нелинейны.

Вычислительный эксперимент позволяет находить новые закономерности, проверять гипотезы, визуализировать ход событий и т. д.

Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т. е. на настоящем образце изделия, подвергая его всяческим испытаниям.

С развитием вычислительной техники появился новый уникальный метод исследования — компьютерный эксперимент. Компьютерный эксперимент включает некоторую последовательность работы с моделью, совокупность целенаправленных действий пользователя над компьютерной моделью.

Этап 4. Анализ результатов моделирования.

Конечная цель моделирования — принятие решения, которое должно быть выработано на основе всестороннего анализа полученных результатов. Этот этап решающий — либо вы продолжаете исследование, либо заканчиваете. Возможно, вам известен ожидаемый результат, тогда необходимо сравнить полученный и ожидаемый результаты. В случае совпадения вы сможете принять решение.

Основой для выработки решения служат результаты тестирования и экспериментов. Если результаты не соответствуют целям поставленной задачи, значит, допущены ошибки на предыдущих этапах. Это может быть либо слишком упрощенное построение информационной модели, либо неудачный выбор метода или среды моделирования, либо нарушение технологических приемов при построении модели. Если такие ошибки выявлены, то требуется корректировка модели, т. е. возврат к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования. Главное, надо всегда помнить: выявленная ошибка — тоже результат.

Как говорит народная мудрость, на ошибках учатся.

Разновидности задач моделирования и подходов к их решению.

Задачи моделирования делятся на две категории: прямые и обратные.

Прямые задачи отвечают на вопрос, что будет, если при заданных условиях мы выберем какое-то решение из множества допустимых решений. В частности, чему будет равен, при выбранном решении критерий эффективности.

Обратные задачи отвечают на вопрос: как выбрать решение из множества допустимых решений, чтобы критерий эффективности обращался в максимум или минимум.

Остановимся на обратных задачах. Если число допустимых вариантов решения невелико, то можно вычислить критерий эффектности для каждого из них, сравнить между собой полученные значения и непосредственно указать один или несколько оптимальных вариантов. Такой способ нахождения оптимального решения называется "простым перебором". Однако. Когда число допустимых вариантов решения велико, то поиск оптимального решения простым перебором затруднителен, а зачастую практически невозможен. В этих случаях применяются методы "направленного" перебора, обладающие той особенностью, что оптимальное решение находится рядом последовательных попыток или приближений, из которых каждое последующие приближает нас к искомому оптимальному.

Модели принятия оптимальных решений отличаются универсальностью. Их можно классифицировать как задачи минимизации (максимизации) критерия эффективности, компоненты которого удовлетворяют системе ограничений (равенств и/или) неравенств.

Их можно разделить на:

принятие решений в условиях определенности - исходные данные - детерминированные; принятие решений в условиях неопределенности - исходные данные - случайные величины.

Классификация задач оптимизации

Исходные данные

Переменные

Зависимости

Задача

Детерминированные 

Непрерывные

Линейные

Линейного программирования

Целочисленные

Линейные

Целочисленного программирования

Непрерывные, целочисленные

Нелинейные

Нелинейного программирования

Случайные

Непрерывные

Линейные

Стохастическое программирование

А по критерию эффективности:

одноцелевое принятие решений (один критерий эффективности);

многоцелевое принятие решений (несколько критериев эффективности).

Наиболее разработан и широко используется на практике аппарат одноцелевого принятия решений в условиях определенности, который получил название математического программирования. В этом "детерминированном" случаи, когда все условия операции известны заранее. тогда, обратная задача будет включает в себя критерий эффективности и некоторые известные заранее факторы (ограничения) позволяющие выбрать множество допустимых решений.

В общем виде обратная детерминированная задача будет выглядеть следующим образом.

При заданном комплексе ограничений найти такое оптимальное решение, принадлежащее множеству допустимых решений, которое обращает критерий эффективности в максимум (минимум).

Метод поиска экстремума и связанного с ним оптимального решения должен всегда исходить из особенности критерия эффективности и вида ограничений, налагаемых на решение.

Очень часто реальные задачи содержит помимо выше перечисленных факторов, еще одну группу - неизвестные факторы. Тогда обратную задачу можно сформулировать следующим образом.

При заданном комплексе ограничений, с учетом неизвестных факторов, найти такое оптимальное решение, принадлежащее множеству допустимых решений, которое, по возможности, обеспечивает максимальное (минимальное) значение критерий эффективности.

Это уже другая, не чисто математическая задача (недаром в ее формулировке сделана оговорка "по возможности"). Наличие неопределенных факторов переводит эту задачу в новое качество: она превращается в задачу о выборе решений в условиях неопределенности.

Приведем примеры.

Пример

Планируется ассортимент товаров для распродажи на ярмарке. Желательно было бы максимизировать прибыль. Однако заранее неизвестно них количество покупателей, которые придут на ярмарку, ни потребности каждого из них.

Пример

Планируется ассортимент товаров для распродажи на ярмарке. Желательно было бы максимизировать прибыль. Однако заранее неизвестно них количество покупателей, которые придут на ярмарку, ни потребности каждого из них.

Для того, чтобы принимать решение в условиях неопределенности, необходимо знать каков вид этой неопределенности. По этому признаку можно различать стохастическую (вероятностную) неопределенность, когда неизвестные факторы статистически устойчивы и поэтому представляют собой обычные объекты теории вероятностей - случайные величины (или случайные функции, события и т.д.). При этом должны быть известны или определены при постановке задачи все необходимые статистические характеристики (законы распределения и их параметры).

Пример

Планируется ассортимент товаров для распродажи на ярмарке. Желательно было бы максимизировать прибыль. Однако заранее неизвестно них количество покупателей, которые придут на ярмарку, ни потребности каждого из них.

Пример

Планируется ассортимент товаров для распродажи на ярмарке. Желательно было бы максимизировать прибыль. Однако заранее неизвестно них количество покупателей, которые придут на ярмарку, ни потребности каждого из них.

В стохастических задачах неизвестные факторы представляют собой случайные величины с какими-то в принципе известными, вероятностными характеристиками - законами распределения, математическими ожиданиями, дисперсиями. Тогда критерий эффективности, зависящий от этих факторов, тоже будет величиной случайной. Максимизировать или минимизировать случайную величину невозможно: при любом решении она остается случайной, неконтролируемой.

Возникает вопрос, нельзя ли заменить случайные факторы их средними значениями (математическими ожиданиями). Тогда задача становится детерминированной и может быть решена обычными методами. Понятно, что решение этого вопроса зависит от того, насколько случайны эти факторы, как мало они откланяются от своих математических ожиданий.

Приведем примеры. Например, если мы составляем план снабжения группы предприятий сырьем, то можно в первом приближении пренебречь, скажем, случайностью фактической производительности источников сырья (если их производство хорошо налажено). Но, если, например, планируется работа ремонтной мастерской, обслуживающей автобазу, то пренебречь случайностью момента появления неисправностей и случайностью времени выполнения ремонта невозможно.

В случаях, когда критерий эффективности остается случайной величиной, можно в качестве критерия эффективности взять его среднее значение (математическое ожидание) и выбрать такое решение, при котором этот усредненный показатель обращается в максимум (минимум). Очень часто именно так и поступают, выбирая в качестве критерия эффективности в задачах, содержащих определенность, не просто доход, а средний доход, не просто время, а среднее время.

Применение "оптимизации в среднем" дает хорошие результаты, когда речь идет ряде длинных однородных операций, тогда "минусы" в одном случае покрываются "плюсами" в другом. Но возможны случаи, когда такая оптимизация не дает нужного эффекта.

Пример

Планируется ассортимент товаров для распродажи на ярмарке. Желательно было бы максимизировать прибыль. Однако заранее неизвестно них количество покупателей, которые придут на ярмарку, ни потребности каждого из них.

Прежде всего нужно выбрать показатель эффективности F. Разумеется, желательно, чтобы время ожидания врача было минимальным. Но время величина случайная и если применить "оптимизацию в среднем", то надо выбрать тот алгоритм, при котором время ожидания минимально.

Но дело в том, что время ожидания врача отдельными больными не суммируется: слишком долгое ожидание одного из них не компенсируется почти мгновенным обслуживанием другого. Чтобы избежать таких неприятностей, можно дополнить показатель эффективности добавочными требованиями, чтобы фактическое время ожидания врача было не больше какого предельного значения f0. Поскольку время ожидания величина случайная, нельзя просто потребовать, чтобы выполнялось условие F≤ f0, но можно потребовать, чтобы это условие выполнялось с большой вероятностью, настолько большой, чтобы событие F≤ f0 было практически достоверным. Пусть k=0,995 и потребуем, чтобы вероятность P(F≤ f0 ) ≥ k.

Введение такого ограничения означает, что из области допустимых решений, исключаются решения эму не удовлетворяющие. Ограничения такого типа называются стохастическим ограничениями.

Особенно осторожными надо быть с "оптимизацией в среднем", когда речь идет об единичной операции.

Кроме рассмотренных выше, бывают задачи, когда неизвестные факторы не могут быть изучены и описаны статистическими методами. Это бывает в двух случаях:

распределение вероятностей для параметров в принципе существует, но к моменту принятия решения не может быть получено;

распределение вероятностей для параметров вообще не существует.

Пример

Проектируется информационно - вычислительная система, предназначенная для обслуживания каких - то случайных потоков требований (запросов).

Вероятностные характеристики этих потоков требований в принципе могли быть получены из статистики, если бы данная система (или аналогичная ей) уже существовала и функционировала достаточно долгое время. Но к моменту создания такой информации нет. Как поступить в этом случае?

В этом случае разумно применить адаптивный алгоритм. Он заключается в следующем. Оставляют некоторые элементы решения свободными, изменяемыми. Затем выбирают какой - нибудь вариант решения, зная, что он не самый лучший и пускают систему в ход, а попом по мере накопления опыта, целенаправленно изменяют свободные параметры, добиваясь того, чтобы эффективность не уменьшалась, а увеличивалась.

Теперь рассмотрим случай, когда вообще не существует вероятностных характеристик, случай нестохастической неопределенности.

Пример

Допустим, планируется некоторая торгово-производственная операция успех которой зависит от того, юбки какой длины будут носит женщины через два года.

Понятно, что распределение этой вероятностной величины не может быть получено не из каких статистических данных. Что же делать в этом случае?

Можно поступить следующим образом. Задаться каким более или менее правдоподобным значением вероятностного параметра и решить данную задачу, как обычную детерминированную задачу. Но полученное решение может и не быть оптимальным, просто мы получим некоторое компромиссное решение.

В настоящее время полноценной научной теории компромисса не существует, хотя некоторые попытки в этом направлении в теории игр и статистических решений делаются.

Методы математического программирования.

Выше уже упоминалось о самых простых - детерминированных и одноцелевых задачах, исследованием которых занимается математическое программирование. Слово программирование в данном случае означает "планирование".

К математическому программированию относится:

1. Линейное программирование: состоит в нахождении экстремального значения линейной функции многих переменных при наличии линейных ограничений, связывающих эти переменные;

2. Нелинейное программирование: целевая функция и ограничения могут быть нелинейными функциями;

3. Особым случаем в задачах линейного и нелинейного программирования является случай, когда на оптимальные решения накладывается условие целочисленности. Такие задачи относятся к целочисленному программированию;

4. Динамическое программирование: для отыскания оптимального решения планируемая операция разбивается на ряд шагов (этапов) и планирование осуществляется последовательно от этапа к этапу. Однако выбор метода решения на каждом этапе производится с учетом интересов операции в целом;

5. Теория графов: с помощью теории графов решаются многие сетевые задачи, связанные с минимальным протяжением сети, построение кольцевого маршрута и т.д.

6. Стохастическое линейное программирование

Бывает много практических ситуаций, когда коэффициенты ci целевой функции, коэффициенты aij в матрице коэффициентов, коэффициенты ограничений bi - являются случайными величинами. В этом случае сама целевая функция становится случайной величиной, и ограничения типа неравенств могут выполняться лишь с некоторой вероятностью. Приходится менять постановку самих задач с учётом этих эффектов и разрабатывать совершенно новые методы их решения. Соответствующий раздел получил название стохастического программирования.

7. Геометрическое программирование

Под задачами геометрического программирования понимают задачи наиболее плотного расположения некоторых объектов в заданной двумерной или трехмерной области. Такие задачи встречаются в задачах раскроя материала для производства каких-то изделий и т.п. Это - еще недостаточно разработанная область математического программирования и имеющиеся здесь алгоритмы в основном ориентированы на сокращение перебора вариантов с поиском локальных минимумов.

8. Задачами теории массового обслуживания является анализ и исследование явлений, возникающих в системах обслуживания. Одна из основных задач теории заключается в определении таких характеристик системы, которые обеспечивают заданное качество функционирования, например, минимум времени ожидания, минимум средней длины очереди.

9. Теория игр пытается математически объяснить явления возникающие в конфликтных ситуациях, в условиях столкновения сторон. Такие ситуации изучаются психологией, политологией, социологией, экономикой.

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений. Мы под "моделью" будем понимать такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале.

Математические описания (модели) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т. д. являются одинаковыми с точки зрения самого описания, хотя процессы различны.

План снабжения предприятий

История развития электротехники Электротехника (от электро... и техника), отрасль науки и техники, связанная с применением электрических и магнитных явлений для преобразования энергии, получения и изменения химического состава веществ, производства и обработки материалов, передачи информации, охватывающая вопросы получения, преобразования и использования электрической энергии в практической деятельности человека.

История развития электрической энергии   Электричество, совокупность явлений, обусловленных существованием, движением и взаимодействием электрически заряженных тел или частиц. Взаимодействие электрических зарядов осуществляется с помощью электромагнитного поля (в случае неподвижных электрических зарядов - электростатического поля).


Однофазные выпрямители и сглаживающие фильтры