Механические краны Спецификация Техника вычерчивания и обводка Обозначения графические материалов Построение лекальных кривых Правила нанесения размеров Примеры построения сопряжений Геометрические построения

Выполнение сборочного чертежа

Пересечение прямой с поверхностью многогранника

В общем случае алгоритм определения точек пересечения (точек входа и выхода) прямой с поверхностью многогранника аналогичен алгоритму определения точки пересечения прямой с плоскостью (см. 4.4) и состоит в следующем:
1) через данную прямую проводим вспомогательную плоскость;

2) строим сечение заданной поверхности с вспомогательной плоскостью;

3) определяем искомые точки как точки пересечения данной прямой с ломаной линией, ограничивающей контур сечения.

 

Пример. Определить точки пересечения прямой l с поверхностью наклонной призмы.
Решение. Расчет статически неопределимой фермы Задачи по строительной механике
1) Заключаем прямую l в горизонтально-проецирующую плоскость Q (Q').

2) Определяем сечение (1-2-3) призмы с плоскостью Q.
Для этого сначала определяем точки 1,2,3 на горизонтальной проекции как точки пересечения ребер с вырожденной проекцией Q', а затем по линиям связи определяем фронтальные проекции 1",2",3".

3). Определяем точки K1 и K2 пересечения проекции l'' со стороной треугольника 1'',2'',3''. Горизонтальные проекции K'1 и K'2 искомых точек лежат на горизонтальной проекции l' прямой l.

 

Взаимное пересечение многогранников

Линия пересечения многогранников - есть ломаная линия, каждое звено которой является отрезком линии пересечения граней первого и второго многогранников. Вершинами линии пересечения многогранников являются точки пересечения ребер первого многогранника с гранями второго, а также ребер второго многогранника с гранями первого. Построение вершин линии пересечения сводится к многократному решению задачи на пересечениях прямой с плоскостью. Общий алгоритм решения задачи следующий:

1) Определяем точки пересечения ребер первого многогранника с гранями второго.
2) Определяем точки пересечения ребер второго многогранника с гранями первого.
3) Соединяем между собой найденные точки, при этом соединяют те из них, которые лежат на одних и тех же гранях.

На практике поиск линии пересечения двух и более многогранников является сложной задачей. Более современным аппаратом выявления линии пересечения являются системы компьютерного моделирования трехмерных фигур, например, система "CG-Вектор". Патентные исследования Под патентными понимают исследования технического уровня и тенденций развития объектов хозяйственной деятельности, их патентоспособности, патентной чистоты и конкурентноспособности на основе патентной и другой информации (стандартов и т.д.). Научные теории и математические методы, методы организации и управления производством, алгоритмы и программы для вычислительных машин, проекты и схемы планировки зданий и сооружений объектами изобретений не являются и патентной проработке не подлежат. Патентные исследования являются составной частью научно-исследовательских, проектных, конструкторских и технологических работ, предусмотренных стандартами системы разработки и постановки продукции на производство (СР ПП), а также другими нормативными документами, регламентирующими разработку, производство и реализацию объектов техники. Для учебных курсовых и дипломных проектов необходимость и глубину патентных исследований определяет кафедра, на которой выполняется проект. В задании на проект должны быть необходимые указания

Пересечение двух плоскостей общего положения. Метод секущих плоскостей

Многогранники как поверхности и многогранники как тела Задание многогранников Геометрическими элементами многогранников являются вершины, ребра, грани и для многогранников-тел - пространство внутри многогранника. Все элементы можно представить в виде структурированного массива точек.

Многогранники, как поверхности, пересекаются по линии и многогранники, как тела, пересекаются по трехмерным телам. Используя теоретико-множественные операции, с многогранниками как с телами (многогранники могут быть как тела с нулевой толщиной стенок-граней), можно выполнять операции объединения, вычитания и пересечения

Плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой плоскости. Таким образом, чтобы построить плоскость, перпендикулярную заданной плоскости, необходимо сначала построить прямую, перпендикулярную данной плоскости, и через эту прямую провести искомую плоскость.

Линией наибольшего ската (уклона) называется прямая плоскости, перпендикулярная к горизонтальному следу или горизонталям этой плоскости

Методы преобразования проекций. Вращение Позиционные и метрические задачи решаются проще, если геометрические фигуры занимают по отношению к плоскостям проекций частные положения (перпендикулярные или параллельные). Такое положения фигур можно достичь вращением их вокруг проецирующих, линий уровня или координатных осей


Форма и порядок заполнения спецификации к сборочным чертежам