квантовой хромодинамики

Математика
Типовой расчет по математике
Функции нескольких переменных
Примеры вычисления интегралов
Кратные интегралы
Криволинейные и поверхностные интегралы
Физика лабораторные работы
Строение атомов
Явление электромагнитной индукции
Законы сохранения в механике
Понятие о внутреннем трении
Интерференция света
Оптическая пирометрия
Изучение цепи переменного тока
Ядерные реакторы
Ядерная физика
Электротехника
Лекции, лабораторные и примеры расчета из курсовой
Трехфазные трансформаторы
Постоянный ток
Сила и плотность тока
Электрическая емкость. Конденсаторы
Закон Ома для замкнутой цепи
Закон Ома для однородного участка цепи
Сопромат
Контрольная работа по сопромату
Методика решения задач
Дополнительные задачи на сдвиг
Сложное сопротивление
Действие динамических нагрузок
Начертательная геометрия
Начертательная геометрия
Построить три проекции призмы
Машиностроительное черчение
Метрические задачи
Обозначения шероховатости поверхности
Основы теории теней
Введение в черчение
Информатика
Архитектура персонального компьютера
Программное обеспечение персонального компьютера
Операционная система Windows
Типы локальных сетей
Система управления базами данных MS Access
Операционная система Linux
Техническое обслуживание компьютера
Инструменты для разборки и чистки
Переформатирование жесткого диска
Системы резервирования данных
Гарантийные обязательства и сервисное обслуживание
Программы для восстановления данных
Ланшафт, архитектура
Ландшафтная архитектура
История и стили в архитектуре
Орнаментальное искусство
Орнаменты древнего мира
Древнегреческое орнаментальное искусство
Орнаменты Классицизма, Ампира, Модерна
Художественные стили
Авангардизм
Модернизм
Романский стиль
Ампир
Рококо
Буддизм
Модерн
Готическое искусство
Арт-дизайн
Зарождение арт-дизайна в проектировании мебели
Общие черты и этапы развития культуры ХХ века
Изобразительное искусство и архитектура
Важнейшее искусство XX века – кино
Русская усадьба
Максим Горький в семейной родословной
Кандинский
МОНДРИАН, ПИТ
АБСТРАКЦИОНИЗМ
Суть дизайнерской деятельности
Создание дизайн-концепции
Приемы озеленения территорий
Зонирование сада
Камень для ландшафтного дизайна

60-70 годы 20-го столетия ознаменовались построением фундаментальной теории сильного взаимодействия элементарных частиц - квантовой хромодинамики, КХД. Основополагающую роль в этом сыграли теоретические работы, как в Советском Союзе, так и за рубежом. Предположение о наличии кварков и глюонов с дополнительным квантовым числом, которое получило термин цвет, явилось поворотным моментом для возникновения КХД. На протяжении 40 лет КХД получило огромное число экспериментальных подтверждений. В 1968 году в реакциях рассеяния электронов на нуклонах было обнаружено наличие точечных объектов партонов, составляющих нуклоны. Предположение в 1973 году об асимптотической свободе кварков и глюонов, то есть об очень слабом их взаимодействии при больших энергиях, явилось простым объяснением наличия партонов в электрон-нуклонном рассеянии. Наблюдаемые партоны следует отождествить с кварками и глюонами. Было показано, что бегущая константа связи сильного взаимодействия уменьшается с увеличением переданного импульса (уменьшением расстояния между взаимодествующими партонами) между кварками и/или глюонами.

Одним из важных экспериментальных подтверждений о наличии кварков послужило обнаружение закономерностей в глубоко неупругом рассеянии с участием адронов. На основании принципа автомодельности и привлечения модели квази-свободных кварков было сформулировано правило кваркового счета. При рассеянии адронов a+b->c+d с большими переданными импульсами на разные углы и при разной энергии, s, в соответствии с экспериментом должно наблюдаться степенное падение спектров со степенью равной сумме конституентных кварков адронов, n=na+nb+nc+nd. Экспериментальное наблюдение кваркового счета явилось реальным подтверждением наличия физического смысла цветных объектов, кварков.

Конфайнмент кварков является другой стороной асимптотической свободы кварков и глюонов. Отсутствие свободных кварков, их удержание внутри нуклона на расстоянии порядка 1 Ферми могут быть объяснены антиэкранированием. В процессе увеличения расстояния между кварками глюоны начинают рождать новые глюоны из вакуума, которые только усиливают взаимодействие. Расчет конфайнмента затруднен, поскольку взаимодействие становится сильным и не может быть описано в рамках пертубативной КХД. Однако численное моделирование КХД на решетке подтверждает наличие конфайнмента.

Возможность существования кварков и глюонов в большом объеме в фазе деконфайнмента было предположено в 1975 году для объяснения стабильности нейтронных звезд. В это же время делается предположение, что подобная фаза может существовать в начальной стадии Большого Взрыва при образовании нашей Вселенной, когда вещество было горячим и плотным. Фактически с этого времени начинается история интенсивного экспериментального и теоретического исследования возможности образования вещества из слабо связанных кварков и глюонов в лабораторных условиях.

 Столкновения двух ядер с релятивистской энергией является основным экспериментальным способом достижения большой плотности энергии и температуры. Был введен термин кварк-глюонная плазма (КГП) для описания состояния ядерного вещества в фазе деконфайнмента из кварков и глюонов. На рис.1 схематически показаны границы различных форм КХД вещества в переменных температуры и барионного химического потенциала.

Систематическое исследование ядро-ядерных столкновений на пучках релятивистских ионов было начато более 30 лет назад. Существенным продвижением в физике ядер при релятивистских энергиях был запуск в 2000 году ускорителя на встречных пучках, Relativistic Heavy Ion Collider (RHIC) в БНЛ. Он был разработан и построен преимущественно под программу столкновения ядер вплоть до золота с энергией 200 ГэВ в системе центра масс двух нуклонов. 

 

Рис.1 Теоретическая фазовая диаграмма КХД вещества для безмассовых кварков как функция температуры T и барионного химического потенциала . Линиями отмечены три фазы: адронный газ, кварк-глюонная плазма и цветная сверхпроводимость.

В нуклон-нуклонных столкновениях при энергии RHIC неупругое сечение N-N составляет около 80% от полного сечения. В одном соударении Au+Au  происходит множество неупругих N-N взаимодействий в течение очень короткого времени за счет лоренцевского сжатия. Область взаимодействия так же сжата в лабораторной системе. Последующие взаимодействия рожденных частиц за счет взаимного рассеяния перераспределяют энергию в область центральных быстрот. Образующаяся система частиц существует в лабораторной системе на время соизмеримое с размерами ядер, то есть порядка 5-10 Фм/с. Плотность энергии частиц в центральной области быстрот может быть оценена по формуле Бьёркена:

=ET/(0r2A2/3)*dN/dy (1)

где ЕТ есть средняя поперечная энергия частицы, =1 Фм/с есть типичное время формирования частиц, r=1,18 Фм равняется радиусу нуклона, dN/dy есть множественность частиц на единицу быстроты в центральной области. При энергии RHIC с использованных экспериментально измеренной множественности частиц и их средней энергии на PHENIX была получена оценка ~5 ГэВ/Фм3.

При энергии RHIC в p+p столкновениях жесткое рассеяние (процессы с большой передачей импульса) является доминирующим процессом при рождении частиц с поперечным импульсом pT>2 ГэВ/с. Жесткие процессы в нуклон-нуклонных столкновениях могут быть рассчитаны в пертубативной КХД (пКХД) с привлечением теоремы факторизации: сечение записывается через произведение независимых вероятностей распределения партонов в нуклоне, их сечения взаимодействия и последующую фрагментацию партона в адроны. Это приближение хорошо описывает экспериментальные данные р+р, рис. 2.

 

Рис. 2. Инвариантные сечения для 0 в центральной области быстрот в p+p столкновениях при энергии 200 ГэВ (точки) совместно с расчетами по пКХД(сплошная и пунктирная кривые), а). б) Относительная статистическая (точки) и систематическая ошибка измерений (заштрихованная область). с) Относительная разность между экспериментальными данными и расчетами для двух параметризаций функции фрагментации партонов, FF. 

Данная работа посвящена исследованию жестких процессов, а именно рождению частиц с большими поперечными импульсами. В столкновениях ядер при энергии RHIC область взаимодействия перекрывает пространственный объем в несколько сотен кубических Ферми с плотностью энергии, достигающей несколько ГэВ/Фм3. Свойства образующегося вещества будут проявляться в спектрах экспериментально наблюдаемых частиц. В частности, потеря энергии быстрыми партонами в цветной среде должна приводить к подавлению их спектров при больших импульсах. Однако быстрые партоны не могут быть непосредственно наблюдаемы. При высоких энергиях партоны фрагментируют в адроны в узком угловом конусе относительно первичного партона. Возникает струя адронов, сфокусированная вокруг лидирующего адрона. Из-за большой множественности частиц в ядро-ядерных столкновениях образующиеся струи адронов не могут быть однозначно выделены. Поскольку адроны с pT>2 ГэВ/с являются преимущественно лидирующими частицами от фрагментации партонов, измерение спектров частиц при больших pT является надежным способом исследования рождения струй.

Для численного определения эффектов среды на рождение энергичных частиц используют ядерный модификационный фактор RAA, который является оценкой выхода измеренных частиц в A+A столкновениях по сравнению с ожидаемым выходом, опираясь на бинарный скейлинг и результаты в p+p столкновениях.

RAA=(выход в А+А)/[(выход в р+р)*Nbinary] , (3)

где Nbinary есть среднее число независимых нуклон-нуклонных соударений в конкретном А+А столкновении. В силу малости сечения жестких процессов такое предположение является верным. При отсутствии эффектов начального или конечного состояния в A+А соударениях RAA должно равняться единице. Отличие RAA от единицы будет указывать на наличие дополнительных эффектов.

Последующие главы посвящены детальному и всестороннему изучению эффектов влияния среды на рождение заряженных адронов (без идентификации их по типу или массе) при больших поперечных импульсах.

 

В Главе 3 дано краткое описание установки PHENIX и трекинга заряженных частиц в центральном спектрометре. Эксперимент PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, является одним из четырех детекторов, построенных на ускорительном комплеске RHIC. Физическая задача PHENIX заключается в эксперементальном исследовании сильных взаимодействий при большой плотности и температуры в столкновениях тяжелых ядер, в результате которых предполагается образование нового состояния ядерного вещества: кварк-глюонной плазмы, КГП. За годы работы на установке было исследовано несколько сталкивающихся систем: Au+Au, d+Au, p+p при значениях энергии 200 ГэВ и 130 ГэВ.

 PHENIX содержит несколько основных частей: центральный спектрометр, состоящий из двух плечей, два мюонных спектрометра, раcположенных под углами вперед по направлению сталкивающихся пучков и набор детекторов для определения общих характеристик столкновения, Рис. 3.

 

 

Рис. 3. Схема расположения основных спектрометров PHENIX. На верхней панели показаны два плеча центрального спектрометра. Ядра сталкиваются в центре, направление ускоренных пучков ориентировано перпендикулярно плоскости рисунка. Для трекинга заряженных частиц используются дрейфовые камеры (DC) и падовые камеры (PC1, PC2, PC3). На нижней панели показаны мюонные спектрометры (вид сбоку), направление пучков идет слева направо и наоборот.

В настоящей работе использовались результаты измерений, полученные в центральном спектрометре. Центральный спектрометр является магнитным спектрометром и обеспечивает аксиальное поле относительно точки столкновения, ориентированное параллельно направлению пучков. Каждое плечо центрального спектрометра имеет захват по 90 градусов в азимутальном направлении и ±0,35 вдоль направления пучков. Спектрометр состоит из трековой системы для регистрации заряженных частиц и электромагнитного калориметра. Калориметры на основе свинцово-сцинтилляционных модулей (PbSc) и свинцового стекла (PbGl) регистрируют фотоны и энергичные электроны.

 Трековая система центрального спектрометра состоит из набора проволочных камер. Дрейфовые камеры (DC) имеют высокую координатную точность и обеспечивают  импульсное разрешение. Пропорциональные падовые камеры (PC1, PC2, PC3) определяют 3-х координатное положение трека, используются в алгоритме поиска трека и обеспечивают возможность подавление случайных фонов.

Анализ заряженных частиц по импульсу осуществляется по углу отклонения трека магнитным полем в азимутальной плоскости. Величина отклонения трека от направления по радиусу в месте расположения дрейфовых камер служит определителем поперечного импульса частицы.

В каждом из плеч центрального спетрометра расположены газовые детекторы черенковского излучения (Ring Imaging CHerenkov detectors, RICH). Они идентифицируют электроны. RICH регистрирует заряженные пионы с импульсом выше 4,8 ГэВ/с. В восточном плече спектрометра расположены время-пролетная система (TOF) для идентификации массы частиц по времени пролета, а так же проволочные камеры переходного излучения (TEC, в данном анализе они не использовались). TOF имеет внутреннее временное разрешение порядка 85 пикосекунд и позволяет отделять каоны от пионов до 2,5 ГэВ/с и протоны до 4,5 ГэВ/с.

Детекторы для измерения общих или глобальных характеристик столкновения состоят из калориметров под нулевым углом (Zero Degree Calorimeter, ZDC), детекторов пучка (Beam-Beam Counters, BBC) и передних калориметров для регистрации протонов-фрагментов из провзаимодействовавших ядер (Forward CALorimeter, FCAL). По ним определяется центральность столкновения и на основании их сигналов вырабатываются триггеры событий. Относительное положение глобальных детекторов показано на Рис. 4. FCAL применялся только для анализа данных в d+Au столкновениях.

 Трековые детекторы центрального спектрометра. А Основным детектором для нахождения трека и определения его импульса являются две дрейфовые камеры, расположенные в Восточном и Западном плече спектрометра. Дрейфовые камеры являются проволочными камерами с особым режимом фокусировки. Камеры содержат малое количество вещества для минимизации многократного рассеяния и обеспечивают надежную регистрацию треков в самых центральных Au+Au столкновениях при

Рис. 4. Схема расположения глобальных детекторов PHENIX, вид сверху. Приведен случай столкновения пучков дейтерия (d) и золота (Au). По вертикали масштаб рисунка условный. На вставке показаны направления пучков, положение ZDC и FCAL и фрагментов-спектаторов пучка дейтерия (нейтронов и протонов) в разрезе А-А.

множественности рождения заряженных частиц до dN/dy=700. Помимо этого DC имеют пространственное разрешение не хуже 150~мкм, возможность выделения двух треков на расстоянии не более 1,5~мм. Электроника регистрации обеспечивает поддержание считывания до пяти последовательных триггеров событий. 

Каждая из DC представляет собой цилиндрическую арку изготовленную из титана с внутренним радиусом 2 м, наружным радиусом 2,4 м и азимутальным углом захвата 90о, Рис. 5.

Рис. 5. Внешняя конструкция арки дрейфовой камеры.

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач