Математика пример решения задач контрольной работы

Пример 5.3 Найти: а) ; б) .

Решение. В случае а) имеем

(после замены применили табличную формулу 11)).

При решении б) обязательно проводим замену пределов интегрирования.

5.3. Интегрирование по частям. В ряде случаев помогает «формула интегрирования по частям». Для неопределенного интеграла она имеет вид

 , (5.2)

для определенного

 , (5.3)

При этом важно учитывать следующее.

1) Если подынтегральная функция содержит произведение многочлена от x на функции , то в качестве u выбирается многочлен, а оставшееся под знаком интеграла выражение относится к dv.

2) Если подынтегральная функция содержит обратные тригонометрические () или логарифмические () функции, то в качестве u выбирается одна из них.

Пример 5.4. Найти: а) ; б) .

Решение. В случае а) применяем формулу (5.2) и второе правило. Именно, полагаем . Тогда . Далее, , а потому . Следовательно, . В полученном интеграле выделим целую часть подынтегральной функции (так поступают, когда степень числителя не меньше степени знаменателя):

.

Окончательно решение выглядит так:

В примере б) используем (5.3) и первое из правил.

5.4. Интегрирование выражений, содержащих квадратный трехчлен. Основные идеи заключаются в выделении в квадратном трехчлене полного квадрата и в проведении линейной замены, позволяющей свести исходный интеграл к табличным вида 10)-16).

Пример 5.5. Найти: а) ; б) ; в) .

Решение. В случае а) действуем следующим образом:

,

поэтому (с учетом 13) )

При решении примера б) потребуются дополнительные преобразования, связанные с присутствием переменной в числителе подынтегральной функции. Выделив полный квадрат в знаменателе (), получим:

Для второго из интегралов в силу 11) (табл.2) имеем: . В первом интеграле проведем внесение под знак дифференциала:

.

Таким образом, собирая все вместе и возвращаясь к переменной x, получаем:

В примере в) также предварительно выделяем полный квадрат:

.

Далее проводим замену переменной () и окончательно имеем:

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач