Строение атомов Явление электромагнитной индукции Законы сохранения в механике Понятие о внутреннем трении Интерференция света Оптическая пирометрия Изучение цепи переменного тока

Физика лекции, задачи примеры лабораторные работы

Интерференция поляризованного света.

Обыкновенная и необыкновенная волны, возникающие в одноосном кристалле при падении на него плоскополяризованного света, когерентны и при определенных условиях могут интерферировать между собой. (Теория интерференции света и условия, необходимые для наблюдения интерференции подробно описаны в руководстве к лабораторным работам «Интерференция света», а также в [1], с. 347-349.)

На рис. 11 представлена оптическая схема, позволяющая наблюдать интерференцию поляризованного света. Плоско поляризованный свет, вышедший из поляризатора П, падает нормально на плоскопараллельную пластинку К, вырезанную из одноосного кристалла параллельно его оптической оси. На выходе из пластинки между обыкновенной и необыкновенной волнами возникает разность фаз

 (8)

где  - оптическая разность хода, d – толщина пластинки. Хотя эти волны когерентны и распространяются после выхода из кристалла по одному и тому же направлению, они не могут интерферировать, так как поляризованы во взаимно перпендикулярных плоскостях. В результате их наложения получается эллиптически поляризованный свет (см. раздел 1, с. 5). Поэтому для получения интерференции необходимо совместить плоскости колебаний этих волн, что осуществляется анализатором А. Анализатор пропустит только ту составляющую каждого из этих колебаний, которая параллельна плоскости анализатора. Это иллюстрирует рис. 12, на котором плоскость анализатора проходит через отрезок ОО’ перпендикулярно плоскости рисунка, а Е’о и E’е – составляющие вектора Е обыкновенной и необыкновенной волн соответственно, пропущенные анализатором.

Интерференционная картина, наблюдаемая на выходе анализатора, зависит от нескольких факторов: разности фаз d, длины волны падающего света, угла между плоскостью поляризатора и оптической осью пластинки, а также угла между плоскостями поляризатора и анализатора. В зависимости от соотношения этих величин на экране будет наблюдаться различная освещенность.

В качестве примера опишем интерференционную картину в монохроматическом свете, наблюдаемую в том случае, когда угол между плоскостями поляризатора и анализатора равен нулю. Если разность фаз d, возникающая между обыкновенной и необыкновенной волнами (формула (8)), кратна 2p (d = 2mp; m = ±1; ±2; ...), то интенсивность света, проходящего через анализатор, будет максимальна. Если же d = (2m+1)p (m = ±1; ±2; ...), то интенсивность света, проходящего через анализатор, минимальна. При значениях d, отличных от предыдущих, интенсивность света принимает промежуточное значение между максимумом и минимумом.

Если на пластинку будет падать плоско поляризованный белый свет, то при наблюдении через анализатор пластинка кажется окрашенной, причем при вращении анализатора или поляризатора относительно друг друга окраска пластинки будет изменяться. Это объясняется тем, что для монохроматических составляющих белого света, имеющих различную длину волны, значения разности фаз d, которые определяют результат их интерференции, неодинаковы.

В том случае, когда толщина d пластинки в различных местах разная, то, как следует из формулы (8), значения d также различны. Поэтому при наблюдении через анализатор такой пластинки в монохроматическом свете на ее поверхности видна система темных и светлых интерференционных полос, соответствующих участкам пластинки с одинаковой толщиной. В белом свете эта пластинка приобретает разноцветную окраску, причем каждая цветная интерференционная линия (изохромата) соединяет те точки пластинки, где ее толщина d одинакова.

Аналогичная картина наблюдается в пластинке, толщина которой всюду одинакова, но зато различны разности показателей преломления no - ne. В этом случае изохроматы соединяют точки, для которых одинаковы разности no - ne. Это явление используется для изучения деформаций в прозрачных твердых телах.

Лабораторная работа 305

ЭКСПЕРИМЕНТАЛЬНАЯ ПРОВЕРКА ЗАКОНА МАЛЮСА

Цель работы - ознакомиться с методами получения и анализа поляризованного света; изучить зависимость интенсивности света, прошедшего через два поляризатора, от их взаимного расположения.

Если свет проходит через два поляризатора, плоскости которых образуют между собой угол j, то интенсивность света, пропущенная такой системой, будет пропорциональна cos2j. Это утверждение носит название закона Малюса (см. раздел 1, с. 5).

Оптическая схема установки, предназначенной для экспериментальной проверки закона Малюса, приведена на рис. 13, а ее общий вид представлен на рис. 14 Установка состоит из осветителя 1, приемника излучения 2, и двух поляризаторов 3 и 4, один из которых закреплен на вертикально установленном гониометрическом столике 5. В качестве приемника излучения служит цезиевый фотоэлемент 6, в оправе объектива которого установлена фокусирующая линза 7. Сила фототока, которая пропорциональна интенсивности света, падающего на фотоэлемент, измеряется с помощью гальванометра 8. Фотоэлемент и осветитель питаются от одного блока питания 9.

 


Порядок выполнения работы

Включить гальванометр 8 и блок питания 9 в сеть 220 В.

Расположить осветитель 1, поляризаторы 3 и 4 и фотоэлемент 6 так, чтобы их центры находились на одной прямой.

Вращением поляризатора 4, закрепленного на гониометрическом столике 5, добиться наибольшего погашения света, проходящего через поляризаторы 3 и 4, что регистрируется с помощью гальванометра 8.

Установить нуль по шкале гальванометра и отсчитать показание гониометра a0, соответствующее минимальной интенсивности проходящего света.

Затем, изменяя угол поворота a гониометрического столика в пределах от a0 до a0 + 180° с шагом 10 - 15°, определить соответствующие показания гальванометра I. Для угла поворота a0 + 90° показание гальванометра должно быть наибольшим (Imax).

6. По формуле  определить угол между плоскостями поляризаторов. Рассчитать соответствующие им значения cos2j и результаты занести в табл. 1.

Таблица 1 

j ,град

I, дел.

cos2j

 

7. Построить график зависимости величины  от cos2j. Подтверждением справедливости закона Малюса будет служить совпадение этого графика с прямой, тангенс угла наклона которой равен единице.

Контрольные вопросы

Что называется естественным и поляризованным светом?

Способы получения поляризованного света (поляризация при отражении и преломлении; двойное лучепреломление)

Устройство и принцип действия поляризаторов (призма Николя, поляроиды).

Закон Малюса.


Физика лабораторные работы