Низкочастотный RC- генератор Выбор электрооборудования Задание на курсовую работу Биполярный транзистор Расчет автогенератора Расчёт электрических фильтров http://acousticrecords.ru/ музыкальная студия звукозаписи.


Электроника примеры расчетов курсовых заданий

Расчет автогенератора

В качестве задающего генератора в работе используются схемы на биполярном транзисторе с пассивной RC-цепью обратной связи (рис. 3.1). Однако по согласованию с преподавателем может быть выбрана любая из известных схем автогенераторов на полевых транзисторах, операционных усилителях (ОУ), либо схемы с колебательными контурами. При этом в пояснительной записке желательно привести обоснование принятого решения.

Теория автоколебательных цепей изложена в [1-3]. Исходными данными, для расчета задающего генератора являются:

- тип схемы;

- тип активного элемента (биполярного транзистора - для схем рис. 3.1);

- напряжение питания Uпит;

- сопротивление RK в коллекторной цепи биполярного транзистора.

Автогенератор собран на составном транзисторе VT1 - VT2 для увеличения входного сопротивления транзистора по цепи базы.

При расчете RС - генератора необходимо руководствоваться следующими практическими соображениями. Сопротивление нагрузки выбирается так, чтобы выполнялось условие: RK<<R (по меньшей мере на порядок, т.е. в 10 раз). Поскольку это сопротивление задано, то при выполнении расчетов нужно следить за тем, чтобы вычисленные значения сопротивлений R в цепи обратной связи удовлетворяли бы указанным условиям.

Существуют рекомендации в по выбору сопротивления базы Rб: Rб>>R. Подобный выбор удобнее делать после расчета значений сопротивлений R.

Емкости конденсаторов С цепи обратной связи обычно выбирают в пределах 100 пФ ¸ 1 мкФ, а величину емкости разделительного конденсатора Ср - из условия: Ср >> С. В пояснительной записке нужно обосновать применение такого разделительного конденсатора.

В отличие от напряжения питания активного элемента (биполярного транзистора), которое можно найти в исходных данных к работе, напряжение смещения U0, задающее положение рабочей точки па проходной вольтамперной характеристике (ВАХ) транзистора ik = F(Uбэ), выбирается студентами самостоятельно. Если это не оговорено особо, то рабочую точку лучше всего выбрать в середине линейного участка проходной ВАХ.

Расчет генератора считается законченным, если:

-  определены значения всех элементов схемы, найдена амплитуда стационарного колебания на выходе генератора;

- приведена полная схема задающего генератора.

Необходимые справочные данные для расчета приведены в разделе 3 (табл. 3.1 и 3.2, рис. 3.1).

В табл. 3.1 использованы обозначения:

Sср - средняя крутизна ВАХ активного элемента генератора в режиме стационарного колебания;

Ri - внутреннее сопротивление активного элемента;

Hyc(jω) - передаточная функция цепи прямой связи (т.е. активного усилительного элемента);

Hос(jω) - передаточная функция цепи обратной связи;

RК - сопротивление в коллекторной цепи биполярного транзистора;

RН - входное сопротивление составного транзистора.

Для получения передаточной функции Hyc(jω) транзистор был заменен упрощенной эквивалентной схемой рис. 2.1, т.е. активный элемент был представлен источником тока, управляемым напряжением (ИТУН). Передаточные функции Нoc(jω) для цепей обратной связи легко находятся известными из теории электрических цепей методами.

Для успешной защиты курсовой работы необходимо уметь делать вывод этих формул.

При пользовании формулой для Hус(jω) следует иметь в виду, что обычно Ri >> RK. Этот факт позволяет упростить формулу:

.

В таблице 3.2 приведены входные и выходные характеристики некоторых транзисторов.

ПРИМЕР РАСЧЕТА: Рассчитать RС-генератор, выполненный по схеме, рис. 3.1, а на биполярном транзисторе 2Т658А.

Частота генерации fГ = 10 кГц.

Напряжение питания  Uпит авт = -20 В.

Сопротивление нагрузки в коллекторной цепи RK = 1 кОм.

В стационарном режиме работы автогенератора на частоте генерации wг=2pfг, то должны выполнятся условия баланса амплитуд и фаз:

,

где НУС(wг), НОС(wг) – модули передаточных функций НУС(jw) (усилительного элемента), НОС(jw) (цепи обратной связи), соответственно;

jУС(wг), jОС(wг) – аргументы этих передаточных функций.

Для заданной схемы:

НУС(wг)@ -SСРRK@SСРRKejp .

Из этой формулы видно, что jУС(wг)=p, значит для выполнения условия баланса фаз необходимо, чтобы цепь обратной связи вносила сдвиг фаз, равный p. Это будет выполнено при равенстве нулю мнимой части знаменателя выражения НОС(jw) из табл. 3.1:

6-R2w2C2+4R/RH=0 .

Отсюда получаем выражение для частоты генерации:

  .

Теперь можно записать, что:

  .

Для схемы, приведенной на рис. 3.1б, также можно получить выражение для частоты генерации:

и коэффициента передачи цепи обратной связи на частоте генерации:

  .

Найдём значения сопротивлений RH и R, входящих в формулы для расчёта  wг и НОС(wг).

Входное сопротивление RН составного транзистора:

RН=bRбэ2 ,

где  b - коэффициент усиления транзистора по току (для VT1);

Rбэ2 – входное сопротивление транзистора VT2.

Для определения b и Rбэ2 нужно выбрать рабочую точку транзистора.

Для этого вначале необходимо построить проходную характеристику транзистора ik=F(uбэ) – зависимость действующего значения тока в выходной цепи от входного напряжения uбэ. В свою очередь, исходными для построения проходной характеристики являются:

входная характеристика транзистора iб=F(uбэ) (рис.2.2);

выходная характеристика транзистора ik=F(uкэ) (рис.2.3).

Эти и подобные им характеристики для разных типов транзисторов являются справочным материалом и приведены в настоящем пособии в разделе 3, табл. 3.2.

На семействе выходных характеристик используемого транзистора 2Т658А (рис. 2.3) проводится нагрузочная прямая через точки с координатами: (0, Uпит) и (Uпит/RK, 0).

По точкам пересечения нагрузочной прямой с выходными характеристиками строим промежуточную характеристику ik=F(iб). Для этих целей удобно составить таблицу:

Iб, мА

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Iк, мА

2,5

4,8

6,5

8,2

10,5

12,2

13,8

15,0

16,5

17,5

Затем используя полученную зависимость (рис. 2.4) и входную характеристику iб=F(uБЭ) (рис. 2.2), определяют требуемую зависимость: iK=F(uБЭ) (рис. 2.5).

Все данные, необходимые для построения характеристики, сведены в таблицу:

uБЭ, В

0,1

0,15

0,2

0,25

0,3

0,35

Iб, мА

0,1

0,25

0,5

0,8

1,25

1,75

Iк, мА

2,5

6

10,5

15

18

18

По проходной характеристики определяют положение рабочей точки. Лучше всего задаться значением  UБЭ0 = 0,2 В – это середина линейного участка проходной ВАХ.

Тогда по входной ВАХ транзистора определяют в рабочей точке:

.

Рис. 2.2

Коэффициент усиления транзистора по току:

.

 

Зная RБЭ2 и b, можно рассчитать сопротивление RH составного транзистора:

RH = b · RБЭ2 = 20 ∙ 0,2 = 4 кОм.

Из условия R>>RK следовало бы выбрать значение R ³ 10 кОм. Но эту величину необходимо уточнить при дальнейшем расчёте.

Определим теперь амплитуду стационарного колебания на выходе генератора. Для этого построим колебательную характеристику Sср = F(UБЭ).

Значение средней крутизны для разных значений UБЭ можно определить по методу 3–х ординат по формуле:

Представим все расчёты в виде таблицы:

U1(БЭ), B

0,05

0,1

0,15

0,2

0,3

0,4

IK max , mA

15

18

18,2

18,2

18,2

18,2

IK min , mA

6

2,5

1,0

0

0

0

SСР, мА/В

90

77,5

57,3

45,5

30

22,7

Определение величины IKmax и IKmin для U1(БЭ) = 0,05 В показано в на рис.2.5.

На основании этой таблицы строится колебательная характеристика SСР = F(U1(БЭ)). Она приведена на рис.2.6.

Для того чтобы по колебательной характеристике определить стационарное действующее значение UБЭ необходимо предварительно рассчитать значение средней крутизны в стационарном режиме .

Известно, что НУС(wГ)=RK. С другой стороны из баланса амплитуд НУС(wГ) = 1/НОС(wГ). Отсюда

.

Определим значение НОС(wГ) для рассчитанных значений  RH и R.

 .

Для этого расчётного значения НОС(wГ) средняя стационарная крутизна =111,5 мА/B располагается выше колебательной характеристики, и поэтому схема не будет генерировать колебания.

Для понижения значения   уменьшим значение R в 2 раза. Из ряда номинальных значений сопротивления выбираем R = 5,3 кОм.

Тогда

и  S*ср = 66,5 mA/В.

Используя колебательную характеристику и зная значение средней крутизны в стационарном режиме S*ср = 66,5 mA/В, легко найти стационарное действующее значение UБЭ. Оно равно: UБЭ = UВХ = 0,12 В. Тогда напряжение на выходе генератора в стационарном режиме можно найти из соотношения

UВЫХ = UВХ ∙ НУС(wГ) = 0,12 ∙ 66,5 = 8 В.

Определим теперь значение емкости в цепи обратной связи. Из выражения для частоты wГ найдем

;

Емкость СР разделительного конденсатора выбирается из условия СР>>С или 1/wГСР ≤ 0,01R. Возьмем СР = 0,5 мкФ.

Осталось определить только значение сопротивления RБ, задающего рабочую точку UБЭ0, I БЭ0. Рассчитаем его по формуле:

.

Выбираем резистор с номиналом R = 820 кОм.

На этом расчет RC-генератора можно считать законченным. Остается лишь привести его схему с найденными значениями элементов. Не забудьте, что все схемы должны вычерчиваться в строгом соответствии с действующими ГОСТами.

Внешнее окружение проектируемого устройства.

Предполагается, что проектируемое устройство является встраиваемым (т. е. размещается на отдельной плате) и реализует связь с внешним окружением через колодки разъёмов. Разъём входа включает:

входные усиливаемые напряжения;

сигнал начальной установки устройства (Уст. “0”, рис. 13, 14);

сигнал запуска/остановки работы устройства;

шины цепей питания.

Последний из этих сигналов подаётся на схему логического И (см. рис. 18) и стробирует выходные сигналы генератора.

Выходной разъём устройства коммутирует выходной сигнал ОУ (усиленный сигнал).

Колодка разъёма графически оформляется в виде таблицы, состоящей из трёх полей: “Контакт”, “Цепь” и “Адрес” (см. /2/, табл. 1.11.1).

Так как общее число входных и выходных контактов не превышает 16, то может быть использован разъём марки ГРППМ – 16.

Разработка устройства формирования управляющих сигналов с «жесткой» логикой работы.

Устройство содержит генератор тактовых импульсов, рассчитанный на заданную частоту и формирователь, реализующий за восемь тактов работы генератора пять управляющих сигналов с заданными временными диаграммами. работает циклически, последовательно повторяя заданные рабочие такты.

 


Такты работы формирователя управляющих сигналов

Ти

Т1

Т2

Т3

Т4

Т5

Т6

Т7

Т8

У0

У1

У8

У9

У13

Устройство содержит генератор тактовых импульсов (Ти) на элементах DD1.1, DD1.2, схему формирования импульса сброса DD1.3, DD1.4, формирователя управляющих сигналов DD2, DD3, DD4, DD5, DD6, DD7.

Таким образом, расчет динамического режима сводится к решению к-раз на каждом шаге численного интегрирования систем линейных алгебраических уравнений, например, рассмотренным ранее методом Гаусса.

При воздействии на схему большого гармонического сигнала с для составлении математической модели схемы в частотной области применяют однократное преобразование Фурье.

Электронная схема для математической модели динамического режима в частотной области с большим сигналов

Наибольшее распространение при анализе чувствительности нашли метод приращений, методы, основанные на решении уравнений чувствительности - моделей чувствительности, метод присоединенных схем

Схема замещения полупроводникового диода состоит из идеального диода, изображенного в виде нелинейного зависимого источника тока I(V), емкости р-п-перехода С и объемного сопротивления RS . Нелинейная модель полупроводникового диода

Линейная схема замещения биполярного транзистора

Полевые транзисторы с управляющим р-n-переходом (Junction FET) описываются моделью Шихмана-Ходжеса в соответствии с эквивалентной схемой

Арсенид-галлиевыи полевой транзистор


Расчет однофазного трансформатора