Ядерные реакции в звездах Физические основы ядерного синтеза Термоядерный синтез в земных условиях Токамак Реакторная технология Перспективы термоядерной энергетики Корпус ядерного реактора

Ядерная физика


Перспективы термоядерной энергетики

Устройство термоядерной электростанции схематично показано на Рис. 12. В камере реактора находится дейтерий-тритиевая плазма, а окружает ее литиево-бериллиевый «бланкет», где происходит поглощение нейтронов и воспроизводится тритий. Вырабатываемое тепло отводится из бланкета через теплообменник в обычную паровую турбину. Обмотки сверхпроводящего магнита защищены радиационными и тепловыми экранами и охлаждаются жидким гелием. Однако не решены еще многие проблемы, связанные с устойчивостью плазмы и очисткой ее от примесей, радиационным повреждением внутренней стенки камеры, подводом топлива, отводом теплоты и продуктов реакции, управлением тепловой мощностью.

Следующее поколение токамаков должно решить технические проблемы, связанные с промышленными реакторами УТС. Очевидно, что перед их создателями возникнут немалые трудности, но, несомненно, и то, что по мере осознания людьми проблем, касающихся окружающей среды, источников сырья и энергии, производство электроэнергии новыми рассмотренными выше способами займет подобающее ему место.

Рис. 12. Схема термоядерной электростанции. Показаны поперечный разрез реактора УТС, система охлаждения и система преобразования энергии. 1 - инжекция топлива; 2 - стенка вакуумной камеры; 3 - литиево-бериллиевый бланкет; 4 - радиационно-тепловая защита; 5 - магнитные обмотки; 6 - охлаждение жидким гелием; 7 - электрогенератор; 8 - паровая турбина; 9 - теплообменник; 10 - теплоноситель внутреннего контура; 11 - вывод продуктов реакции.

Сделанный вывод подтверждают результаты работы комиссии экспертов Европейского союза под председательством Д.Кинга - советника по науке премьер-министра Англии. Комиссия пришла к выводу о необходимости ускорения работ по термоядерному синтезу с целью перехода к его В программе "Fast Track" ("Быстрый путь") предлагается структуры ИТЭРа для начала работ над проектом демонстрационной термоядерной станции и параллельно с созданием ИТЭРа построить источник нейтронов для материаловедческих испытаний. Подобное требование к американскому термоядерному сообществу сформулировал директор отдела науки департамента энергетики США Р. Орбах. Отметим также, что в последнее время активно рассматриваются варианты двухцелевых термоядерных электростанций, включающих параллельно с выработкой электроэнергии выжигание долгоживущих радиоактивных отходов атомной энергетики, опреснение соленых вод, производство синтетического топлива, в том числе водорода из воды.

  • Классификация нейтронов. В ядерных реакциях, образуются, как правило, быстрые нейтроны (с энергией 0,1-1МэВ). Быстрые нейтроны при соударениях с атомными ядрами теряют энергию большими порциями, расходуя её, главным образом, на возбуждение ядер или их расщепление. В результате энергия нейтрона становится меньше минимальной энергии возбуждения ядра (от десятков КэВ до нескольких МэВ в зависимости от свойств ядра). После этого рассеяние нейтрона ядром становится упругим, т.е. нейтрон расходует энергию на сообщение ядру скорости без изменения его внутреннего состояния.

практическому использовать

использованию. международные

Условия осуществления управляемого термоядерного синтеза с положительным энергетическим выходом оказались технически сложными и энергетически «затратными»: температура - не ниже 100 млн градусов, напряженность удерживающего магнитного поля - десятки тысяч эрстед, требуемый объем горячей плазмы - сотни кубических метров. Столь высокие требования и непредсказуемость поведения плазмы привели к тому, что «прямой путь» затянулся на полстолетия (Рис. 17) и тянется до сих пор.


Рис. 17. На пути к реактору-токамаку с положительным выходом энергии (1965-1998 гг.). QDt - отношение ТЯ-энергии к энергии разогрева плазмы


Топливо для реакторов на быстрых нейтронах