Интегрирование по частям

Математика
Типовой расчет по математике
Функции нескольких переменных
Примеры вычисления интегралов
Кратные интегралы
Криволинейные и поверхностные интегралы
Физика лабораторные работы
Строение атомов
Явление электромагнитной индукции
Законы сохранения в механике
Понятие о внутреннем трении
Интерференция света
Оптическая пирометрия
Изучение цепи переменного тока
Ядерные реакторы
Ядерная физика
Электротехника
Лекции, лабораторные и примеры расчета из курсовой
Трехфазные трансформаторы
Постоянный ток
Сила и плотность тока
Электрическая емкость. Конденсаторы
Закон Ома для замкнутой цепи
Закон Ома для однородного участка цепи
Сопромат
Контрольная работа по сопромату
Методика решения задач
Дополнительные задачи на сдвиг
Сложное сопротивление
Действие динамических нагрузок
Начертательная геометрия
Начертательная геометрия
Построить три проекции призмы
Машиностроительное черчение
Метрические задачи
Обозначения шероховатости поверхности
Основы теории теней
Введение в черчение
Информатика
Архитектура персонального компьютера
Программное обеспечение персонального компьютера
Операционная система Windows
Типы локальных сетей
Система управления базами данных MS Access
Операционная система Linux
Техническое обслуживание компьютера
Инструменты для разборки и чистки
Переформатирование жесткого диска
Системы резервирования данных
Гарантийные обязательства и сервисное обслуживание
Программы для восстановления данных
Ланшафт, архитектура
Ландшафтная архитектура
История и стили в архитектуре
Орнаментальное искусство
Орнаменты древнего мира
Древнегреческое орнаментальное искусство
Орнаменты Классицизма, Ампира, Модерна
Художественные стили
Авангардизм
Модернизм
Романский стиль
Ампир
Рококо
Буддизм
Модерн
Готическое искусство
Арт-дизайн
Зарождение арт-дизайна в проектировании мебели
Общие черты и этапы развития культуры ХХ века
Изобразительное искусство и архитектура
Важнейшее искусство XX века – кино
Русская усадьба
Максим Горький в семейной родословной
Кандинский
МОНДРИАН, ПИТ
АБСТРАКЦИОНИЗМ
Суть дизайнерской деятельности
Создание дизайн-концепции
Приемы озеленения территорий
Зонирование сада
Камень для ландшафтного дизайна

Интегрирование по частям.

 Способ основан на известной формуле производной произведения двух функций:

(uv)¢ = u¢v + v¢u

где u(x) и v(x) – некоторые функции от х.

В дифференциальной форме: d(uv) = udv + vdu

Проинтегрировав, получаем: , а в соответствии с приведенными выше свойствами неопределенного интеграла:

 или ;

  Получили формулу интегрирования по частям. Применение этого метода позволяет преобразовать подынтегральную функцию к более простой с помощью операций дифференцирования и интегрирования. При этом подынтегральное выражение представляют в виде произведения udv, каждое из сомножителей которого в дальнейшем используется для получения нового, более простого интеграла содержащего v(x) и du(x). Интегрирование начинается с выбора функции u(x) и дифференциала dv(x) и реализуется по следующей схеме : выбираем  u→находим du=u′dx,; выбираем dv→находим v=∫dv. , полученные выражения подставляются в формулу.

Разберем пример , в котором метод интегрирования по частям применяется два раза. 

 

 Пример 10.

 

Как видно, последовательное применение формулы интегрирования по частям позволяет постепенно упростить функцию и привести интеграл к табличному.

 Пример 11.

Видно, что в результате повторного применения интегрирования по частям функцию не удалось упростить к табличному виду. Однако, последний полученный интеграл ничем не отличается от исходного. Поэтому перенесем его в левую часть равенства.

  Таким образом, интеграл найден вообще без применения таблиц интегралов.

  Прежде чем рассмотреть подробно методы интегрирования различных классов функций, приведем еще несколько примеров нахождения неопределенных интегралов приведением их к табличным ,заменой переменной или введением функций под знак дифференциала, а также интегрированием по частям.

 Пример 12.

  Пример 13.

 Пример 14.

В этом же примере преобразуем дифференциал используя его свойства , внесем cosx под знак дифференциала

  Пример 15.

 Пример 16

 Пример 17.

  Пример 18

 Пример 19

 Пример 20.

  Пример 21.

Интегрирование элементарных дробей.

 Определение: Элементарными называются дроби следующих четырех типов:

 I.  III. 

  II.  IV. 

m, n – натуральные числа (m ³ 2, n ³ 2) и дискриминант b2 – 4ac <0.

 Первые два типа интегралов от элементарных дробей довольно просто приводятся к табличным подстановкой t = ax + b.

II. 

Рассмотрим метод интегрирования элементарных дробей вида III.

Интеграл дроби вида III может быть представлен в виде:

Здесь в общем виде показано приведение интеграла дроби вида III к двум табличным интегралам.

Рассмотрим применение указанной выше формулы на примерах.

 Пример 22.

  Вообще говоря, если у трехчлена ax2 + bx +c выражение (дискриминант)

  b2 – 4ac >0, то дробь по определению не является элементарной, однако, тем не менее ее можно интегрировать указанным выше способом.

 Пример 23.

  Пример 24. .

 Рассмотрим теперь методы интегрирования простейших дробей IV типа.

Сначала рассмотрим частный случай при М = 0, N = 1.

Тогда интеграл вида  можно путем выделения в знаменателе полного квадрата представить в виде . Сделаем следующее преобразование:

.

Второй интеграл, входящий в это равенство, будем брать по частям.

Обозначим:

Для исходного интеграла получаем:

Полученная формула называется рекуррентной. Если применить ее n-1 раз, то получится табличный интеграл .

 Вернемся теперь к интегралу от элементарной дроби вида IV в общем случае.

В полученном равенстве первый интеграл с помощью подстановки t = u2 + s приводится к табличному , а ко второму интегралу применяется рассмотренная выше рекуррентная формула.

 Несмотря на кажущуюся сложность интегрирования элементарной дроби вида IV, на практике его достаточно легко применять для дробей с небольшой степенью n, а универсальность и общность подхода делает возможным очень простую реализацию этого метода на ЭВМ.

 Пример 25:

Высшая математика - лекции, курсовые, типовые задания, примеры решения задач